Chemicals for a Sustainable Future

Scientific Committee Seminar May 17th 2017, EEA Copenhagen Dr Xenia Trier

The problems of the past – visible pollution

Evolving regulations

- Single substances
- National => EU sector legislations, e.g.
 - Industrial emissions directive, Pesticides, Food contact materials, Pharmaceuticals, Water Framework Directive, REACH, Biocides, RoHS+WEEE haz. subst's in electronic equipment
- International agreements, e.g.
 - UNEP Stockholm convention on POPs,
 - Basel Convention on Hazardous Wastes
- Monitoring, reporting and access to data, e.g. via
 - Waterbase and Airbase (EEA)
 - Green house gasses and Ozone depleeting substances
 - European Pollutant Release and Transfer Register (E-PRTR)
 - Information Platform for Chemical Monitoring (IPCheM)
 - EU research projects, e.g. SOLUTIONS and HBM4EU

Risk assessment and management of chemicals

Risks of chemicals based on scientific risk assessment of *known hazards* and management of *foreseen* uses and effects

Take action or not: Balance scientific risk vs. societal needs => completeness of the cost-benefit models?

Increase of world production of chemicals 1950-2000

- 100,000 -150,000 synthetic chemicals produced/used globally
- 15,000 new CAS # registered/day

European Commission (2001) "Towards Sustainability", A European Community Programme of Policy and Action in Relation to the Environment and Sustainable Development, Commission of the European Communities, COM(92) 23/II final, Brussels; White Paper - Strategy for a future Chemicals Policy. Commission of the European Communities, COM(2001) 88 final, Brussels.

Credit: Urban Boije, DG ENV

Megatrend – increasing dependency on chemicals

Production of chemicals

Global chemical production increases

Risk α Hazard x Exposure α

exposures increase => risks increase

- Can risk assessment keep up?
- Possible to manage chemicals safely, now and in the future?

(OECD 2008: Environmental Outlook to 2030)

Known chemical hazards – EU production data

323 millions tonnes total

64% hazardous to health (43% haz. to ecosystems)

36% non-hazardous

REACH chemicals and classification according to CLP REACH does not cover:

- < 1 ton subst./yr/user
- 'polymers'
- existing regulations

REACH

- => Knowledge has increased ©
- => Issue with quality of data and risk assessments

Non-hazardous

Source: Eurostat, 2017, based on 2015 data

Evolving understanding of chemical risks

Two volumes of 'Late lessons, from early warnings'

2001 Late lessons from early warnings: the precautionary principle 1896—2000 European Environment Agency

Evidence of harm of chemicals?

- Impacts of chemicals keep increasing
 - => deaths/illnesses due to air pollution
 - => deaths from workplace exposure (100,000 deaths/yr/EU)
 - => decreased fertility, testicular cancer (EDCs)
 - => suppressed immune systems (fluorocarbons)
 - => 'brain drain' from neurotoxins (e.g. Mercury)
- Decreasing biodiversity (pesticides)
- Acid rain and dying forrests from air pollution
- Antimicrobial resistance due to pharmaceuticals and biocides
- Caused by current and legal heavy metals, pesticides, consumer chemicals
- Spills/mismanagement

Changing context – new uses and combined pressures

Resource scarcity => Circular Economy

- Spreading of industrial sludge on farmland
- Hazardous chemicals in articles

Globalisation

Climate change

- Warmer climate: pests/pesticide use increase
- Remobilisation of legacy chemicals from landfills
- Refigerant gasses: From CFC to F-gasses

Demography

Difficult to foresee future uses

Multiple pressures affect health

.. but chemical pressures can be reduced!

SOLUTION		PLAUSIBLE SCENARIO		DRAWDOWN SCENARIO		OPTIMUM SCENARIO
Refrigerant Management	1	89.74	2	96.49	3	96.49
Wind Turbines (Onshore)	2	84.60	1	146.50	1	139.31
Reduced Food Waste	3	70.53	4	83.03	4	92.89
Plant-Rich Diet	4	66.11	5	78.65	5	87.86
Tropical Forests	5	61.23	3	89.00	2	105.60
Educating Girls	6	59.60	7	59.60	8	59.60
Family Planning	7	59.60	8	59.60	9	59.60
Solar Farms	8	36.90	6	64.60	7	60.48
Silvopasture	9	31.19	9	47.50	6	63.81
Rooftop Solar	10	24.60	10	43.10	13	40.34

Combined pressures – how to assess overall impacts?

Traditionally assessments are done

- For single substances
- In sectors
- For a linear economy
- On either production or use or disposal
- On relative efficiency improvements
- Optimisation of seperate goals: resource-/energy efficiency, low toxicity,

For future assessments it is relevant to consider

- Combined exposure and mixture toxicity
- Full life cycle
- A circular economy chemicals compatible with a CE
- Burden shifting btw various pressures
 - => Overall environmental sustainability assessments

=> Need for harmonisation of risk/life cycle assessments across chemicals legislations, and compatible with a CE

Is it possible to foresee all hazards and future uses?

Mitigation

- Setting limit values for specific chemicals

Adaptation

- Minimising exposure

Restoration

- Reversible pollution
- Irreversible pollution

Avoidance

precautionary measures to avoid potential harm in complex and uncertain situations.

- Avoid use of chemicals of concern
- Design chemicals to avoid hazardous properties

Avoid: Reduce known risks, and reduce future risks

Risk α Hazard x Exposure

.. by decreasing hazard of chemicals

- avoiding use of chemicals of concern:
 SVHC and persistent chemicals
- use grouping to avoid regrettable substitution
- planetary boundary threats

.. by increasing sustainable chemicals

- most effective strategy, recognised by SAICM
- innovation potential for new products and chemicals!
- Include in all R&D programs

... by decreasing exposure

- decrease absolute volume of chemicals
- focus on service rather than chemical
 - => non-chemical solutions
 - => new business models (chemical leasing)

Transition towards a non-toxic environment

Take-away messages

- Combined sum of chemicals impacts human and environmental health
 - => need integration across legislative silos
- Volumes of chemicals increase => Risks increases
 - => cannot keep up with risk assessment
- Incomplete scientific knowledge

Mix toxicity, critical times of exposure, combined exposures across life cycles, unknowns

- Impossible to foresee all future uses and exposures to chemicals
 - => demography change, CE and BE, climate change; policy synergies!

Paradigm shift: reduce overall risk by avoiding use of chemicals of concern

- => avoid use of known chemicals of concern (persistent, SVHCs, EDCs..) in the design phase
- => apply and innovate: green and sustaibale chemistry and non-chemical solutions
- => close collaboration with industry, supply-chain, designers, academia, authorities, NGOs, public
- => alternatives often exist and can be cost-effective

Thank you!

Contact details

Xenia Trier, Ph.D.

Project Manager on Chemicals, Environment and Human Health Green economy group, Integrated Environmental Assessments (IEA) Programme

Kongens Nytorv 6 1050 Copenhagen K, Denmark

xenia.trier@eea.europa.eu eea.europa.eu

eionet.europa.eu/]eionet.europa.eu

Phone: (+45) 33367100 / Direct: (+45) 33367102

Thanks to contributers

EEA Colleagues: Catherine Ganzleben, Caroline Whalley, Vincent Viaud,

Ybele Hoogeveen, Jock Martin. DG ENV: Urban Boije

Reducing complexity is necessary but tricky

Scientific problems are complex:

are often affected by multiple factors

- ⇒ All factors not included (costly) in every study
- ⇒ Recuction leads to loss of information
- ⇒ Design of studies related to observers deliberate/ unaware choice to reduce complexity
- ⇒ Combination of studies from different angles is necessary to reconstruct reality
- ⇒ Differently reduced studies can result in different conclusions
- ⇒ Scientific 'controversies'

Eszter Barbara Bakó, My City/EEA

